58 research outputs found

    The compact group--fossil group connection: observations of a massive compact group at z=0.22

    Full text link
    It has been suggested that fossil groups could be the cannibalized remains of compact groups, that lost energy through tidal friction. However, in the nearby universe, compact groups which are close to the merging phase and display a wealth of interacting features (such as HCG 31 and HCG 79) have very low velocity dispersions and poor neighborhoods, unlike the massive, cluster-like fossil groups studied to date. In fact, known z=0 compact groups are very seldom embedded in massive enough structures which may have resembled the intergalactic medium of fossil groups. In this paper we study the dynamical properties of CG6, a massive compact group at z=0.220 that has several properties in common with known fossil groups. We report on new g' and i' imaging and multi-slit spectroscopic performed with GMOS on Gemini South. The system has 20 members, within a radius of 1 h_70^-1 Mpc, a velocity dispersion of 700 km/s and has a mass of 1.8 x 10^14 h_70^-1 Msun, similar to that of the most massive fossil groups known. The merging of the four central galaxies in this group would form a galaxy with magnitude M_r' ~ -23.4, typical for first-ranked galaxies of fossil groups. Although nearby compact groups with similar properties to CG 6 are rare, we speculate that such systems occurred more frequently in the past and they may have been the precursors of fossil groups.Comment: 7 pages, 3 figures (one color, low resolution), uses emulateapj.sty. Accepted for publication in ApJ Lette

    Multi-conjugated adaptive optics imaging of distant galaxies -- A comparison of Gemini/GSAOI and VLT/HAWK-I data

    Full text link
    Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2μ\mum wavelengths. Currently, GeMS/GSAOI at Gemini South is the only MCAO facility instrument at an 8m telescope. Using real data and for the first time, we investigate the gain in depth and S/N when MCAO is employed for KsK_{\rm s}-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against VLT/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction, because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the signal-to-noise ratios (S/N) of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by a up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for KsK_{\rm s}-band observations with future, extremely large telescopes.Comment: 7 pages, 7 figures. Accepted for publication in MNRA

    Astrometric performance of the Gemini multi-conjugate adaptive optics system in crowded fields

    Get PDF
    The Gemini Multi-conjugate adaptive optics System (GeMS) is a facility instrument for the Gemini-South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arcminute field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide field camera, GeMS/GSAOI's combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exo-planets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic center. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyze deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, un-dithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding one minute, provided enough stars are available to remove high-order distortions. We show however that such performance is not reproducible for multi-epoch observations, and an additional systematic error of ~0.4 mas is evidenced. This systematic multi-epoch error is the dominant error term in the GeMS/GSAOI astrometric error budget, and it is thought to be due to time-variable distortion induced by gravity flexure.Comment: 16 pages, 22 figures, accepted for publication in MNRA

    First performance of the gems + gmos system. Part1. Imaging

    Full text link
    During the commissioning of the Gemini MCAO System (GeMS), we had the opportunity to obtain data with the Gemini Multi-Object Spectrograph (GMOS), the most utilised instrument at Gemini South Observatory, in March and May 2012. Several globular clusters were observed in imaging mode that allowed us to study the performance of this new and untested combination. GMOS is a visible instrument, hence pushing MCAO toward the visible.We report here on the results with the GMOS instruments, derive photometric performance in term of Full Width Half Maximum (FWHM) and throughput. In most of the cases, we obtained an improvement factor of at least 2 against the natural seeing. This result also depends on the Natural Guide Star constellation selected for the observations and we then study the impact of the guide star selection on the FWHM performance.We also derive a first astrometric analysis showing that the GeMS+GMOS system provide an absolute astrometric precision better than 8mas and a relative astrometric precision lower than 50 mas.Comment: 13 pages, 11 figures, accepted for publication in MNRAS on March 23rd 201

    The stellar mass - size relation for cluster galaxies at z=1 with high angular resolution from the Gemini/GeMS multi-conjugate adaptive optics system

    Get PDF
    We present the stellar mass - size relation for 49 galaxies within the zz = 1.067 cluster SPT-CL J0546−-5345, with FWHM ∼\sim80-120 mas KsK_{\mathrm s}-band data from the Gemini multi-conjugate adaptive optics system (GeMS/GSAOI). This is the first such measurement in a cluster environment, performed at sub-kpc resolution at rest-frame wavelengths dominated by the light of the underlying old stellar populations. The observed stellar mass - size relation is offset from the local relation by 0.21 dex, corresponding to a size evolution proportional to (1+z)−1.25(1+z)^{-1.25}, consistent with the literature. The slope of the stellar mass - size relation β\beta = 0.74 ±\pm 0.06, consistent with the local relation. The absence of slope evolution indicates that the amount of size growth is constant with stellar mass. This suggests that galaxies in massive clusters such as SPT-CL J0546−-5345 grow via processes that increase the size without significant morphological interference, such as minor mergers and/or adiabatic expansion. The slope of the cluster stellar mass - size relation is significantly shallower if measured in HSTHST/ACS imaging at wavelengths blueward of the Balmer break, similar to rest-frame UV relations at zz = 1 in the literature. The stellar mass - size relation must be measured at redder wavelengths, which are more sensitive to the old stellar population that dominates the stellar mass of the galaxies. The slope is unchanged when GeMS KsK_s-band imaging is degraded to the resolution of KK-band HST/NICMOS resolution but dramatically affected when degraded to KsK_s-band Magellan/FourStar resolution. Such measurements must be made with AO in order to accurately characterise the sizes of compact, zz = 1 galaxies.Comment: 24 pages, 13 figures, 3 tables. Accepted for publication in MNRAS. Typos corrected, DOI adde
    • …
    corecore